
WHITE PAPER

Enhancing System
Reliability
How architectural events support shifting left for
application resiliency, scalability, and engineering velocity

Resiliency Scalability Velocity

1© vFunction 2024

Table of Contents

02 Introduction

03 What are architectural events?

04 How architectural events improve engineering excellence

05 Architectural events that impact application resiliency

09 Architectural events that impact application scalability

12 Architectural events that impact engineering velocity

16
Architectural events to detect cloud readiness issues and
streamline cloud migration

19 Events for distributed applications

22 vFunction architectural observability

2© vFunction 2024

Engineering organizations constantly search for ways to increase application
release velocity, improve reliability, and address scalability challenges. While
there are many ways that teams try to address these issues, they are primarily
chasing symptoms.

The root cause for most applications — from monoliths to complex microservice
deployments — is the underlying software architecture. Addressing
architectural drift and detecting technical debt problems as they accumulate
empowers application teams to proactively address the core problems affecting
their key performance indicators (KPIs) and metrics.

Architectural events enable engineering teams to detect when software
architecture changes occur, assess their impact on critical engineering KPIs
such as resilience, scalability, release frequency, and cloud readiness, and
pinpoint where, how, and why to fix them.

Introduction

Domains
The addition or deletion  

of business domains  
in the architecture

Dependencies
Cross-domain, circular,  

and high densities of
dependencies

Complexity
A composite measurement

reflecting the effort
required to maintain and
refactor the architecture

Modularity
A critical factor in  

enabling scalability and
adoption of cloud-native

container services

Dead code
Detection of reachable but
unused or obsolete code
through runtime analysis

Resources
Cross-domain use of

resources such as database
tables, files, or sockets

Classes
Dynamic, static,  

and common class
dependencies  
identification

Frameworks
Aging frameworks have  
a significant impact on

cloud readiness, security,
and reliability

Architectural events are detected by routinely analyzing applications’ binaries statically in the CI/CD and
dynamically in production to understand architecture, observe drift, and find and fix architectural technical
debt. They detect changes in software architecture variables, including:

3© vFunction 2024

What are architectural events?

Architectural events provide crucial insights into the changes and issues that impact application architectures.
They identify specific areas of high technical debt, monitor architectural quality, and catch potential issues
before they escalate into significant problems or help remediate them if they already impact application
resiliency. These events are vital indicators of an application’s architectural health and are essential to raising
software engineering quality and increasing business innovation.

Architectural observability detects architectural drift and the events that caused it by providing real-time
visibility into how applications are structured. It addresses sources of technical debt and connects the dots
between architectural decisions and business priorities. Engineering leaders and software architects use it to
increase developer productivity, continuously modernize applications, and maximize cloud benefits.

By continually analyzing application architecture, architectural observability identifies architectural drift and
technical debt and makes intelligent recommendations to fix them. Continuous observation and analysis are
necessary for accurate visibility into architectural health and technical debt.

How architectural events improve
engineering excellence

Bad architecture doesn’t just happen. It accumulates over time and requires active management, akin to  
handling any critical health, fitness, or financial debt responsibility. To prevent the buildup of poor architecture
choices — be they unintended or purposeful — architectural events detect and pinpoint the source of the
problem and identify how they impact your engineering goals and business objectives. Figure 1 below illustrates
an architectural events taxonomy organized by business goals

 increase application stability, reliability, and recover

support increased or dynamic workloads to accommodate growth and demand without
compromising performanc

 accelerate release frequency and decrease frictio

 streamline migration to and adoption of modern cloud-native services

By focusing on architectural events affecting their engineering and business KPIs, leaders can determine what  
to fix first.

 Resiliency:

 Scalability:

 Velocity:

 Cloud readiness:

4© vFunction 2024

Direct  
dependency on

OS/platform

B
ased

 on W
ind

up

cloud
 read

iness rep
o

Directly using  
files or sockets

Per-session
context

Passwords in
properties

Migration to  
cloud friendly

framework

Hard-coded
properties

Non-cloud native
standards

Embedded vs
distributed

caches

Resiliency ScalabilityBusiness
goals

Architectural
events  

(sources of
technical debt)

Velocity Cloud suitability

Domain 
added,

removed

Architectural

complexity

changed

Dependency
between
domains

New common
class added,

removed

Changes in 
exclusivity

Common- 
to-domain

dependency

New dead  
code added,

removed

New high debt
classes added,

removed

Library  
circular

dependencies

Architectural events taxonomy

Figure 1: Architectural events taxonomy

5© vFunction 2024

Architectural events that impact
application resiliency

Application resiliency entails the ability of a workload to recover from
infrastructure or service disruptions, dynamically acquire computing resources
to meet demand and mitigate disruptions, such as misconfigurations or
transient network issues. In a modern cloud environment, applications use high-
availability services, such as auto-scaling, load balancing, microservice and
container services, and DevOps methodologies to increase resiliency.

While the cloud provider is responsible for providing these services, the
application organization is accountable for building a resilient architecture to
take advantage of them.

Here are three architectural events that directly identify and impact application
resiliency. Consider these when building or rearchitecting your applications.

Resiliency

https://vfunction.com/blog/application-resiliency/

6© vFunction 2024

Architectural events that impact application resiliency

Event: Domain added or removed

FILTER

FlightSchedulingControllerEJB * D (107)

liopBookingPnrHandler.operate() * D (2)

liopCheckInGuestHandler * D (5)

liopLogonHandler D (1)

liopMassModifyInventoryHandler * D (1)

liopNfmHandler * D (7)

liopOagScheduleHandler * D (1)

liopOagSsimLoadHandler * D (2)

liopPaymentHandler * D (3)

liopRouteHandler * D (7)

liopScheduleRpHandler * D (3)

liopSsrHandler.operate() * D (2)

Application D (47)

Common Library (0)

Domains (14)
ANALYSIS ABOUT 2 MONTHS AGO

Total Classes 17,122

Services 12

Entry Points 16

Classes 2,004

High Debt Classes 20

Common Classes 780

Resource Exclusivity 93%

Class Exclusivity 83%

Extracted Percentage 13%

Time in Learning 4d 6h 16m

Ignored Classes 0

ACTIONS

MEASUREMENT TAGS (2)

#Explore #Maintenance

N
o.

 S
er

vi
ce

s

Exclusivity %

0
0

6

12

30 60 100

LEGEND Size = No. of Classes

Figure 2: vFunction domain topology view

Definition Introducing new domains or removing an existing domain leads to application instability.

Description The discovery of a new domain or the removal of an existing one triggers this event, shown in Figure 2. This
event affects the overall organization and system structure. Understanding when and why domains are added
or removed helps architects and engineering teams assess the system's evolving needs and complexity.

Impact and

remediation

When adding a new domain, architects should evaluate its role and ensure proper encapsulation to
maintain the system's modularity.

It’s important to verify that the new domain doesn't duplicate existing functionality to prevent redundancy
and maintain the system's cohesion and efficiency.

Removing a domain signifies a shift in the application architecture. This change could be due to various
reasons, such as evolving business needs, optimization efforts, or refactoring. Regardless of the cause,
architects must review the architecture to confirm the removal hasn't adversely affected the coherence of
the application. They should validate the boundaries of the remaining domains to ensure they're intact,
verify that they have adequately reassigned the responsibilities of the removed domain, and evaluate if the
removal has introduced any orphaned elements or dependencies. This analysis helps maintain the
application architecture's integrity, maintainability, and resiliency.

7© vFunction 2024

Architectural events that impact application resiliency

Event: Architectural complexity changed

Definition An application’s architectural complexity reflects the effort required to maintain and refactor  
its architecture.

Description As shown in Figure 3, architectural complexity is a weighted average of five metrics. The event triggers
whenever there is a shift in this computed value, either an increase or a decrease in the composition of
these five metrics:

Complexity Score Very High Effort5

Extracted percentage:

Class exclusivity:

Resource exclusivity:

Domain topology:

Common percentage:

 The
percentage of classes not required in
the application after extracting the
domains.

 The percentage of
classes exclusive to the domains.

The percentage
of resources exclusive to the domains.

 The number of
domain-to-domain calls required to
call any domain.

 The level of
common classes found.

Figure 3: Architectural complexity as calculated and show in vFunction

Impact and
remediation

Architects should simplify areas identified as highly complex

 To improve extracted percentage, add entry points closer to the  
application's root

 To address class exclusivity problems, review and eliminate non-exclusive classes  
of domains where possible

 Identify and reduce non-exclusive resources in the identified domains

 A high volume of domain-to-domain calls creates topological complexities that  
can be managed by reducing unnecessary inter-domain communication

 To increase, review the common classes, mark business logic classes as non-
common and mark infra JARs (Java ARchive).

 Extracted percentage:

 Class exclusivity:

 Resource exclusivity:

 Domain topology:

 Common percentage:

8© vFunction 2024

Architectural events that impact application resiliency

Event: Dependency between domains

FILTER

DinersPaymentService * (2)

EmailService * (2)

InventoryController (3)

2 ModifyFulfillmentController * (4)

OrderController (2)

1 PaymentService * (2)

3 ProductController (3)

ShippingPriceController (2)

StoreSearchController (2)

Application D (0)

Common Library (3)

Domains (9)
ANALYSIS

Total Classes 59

Domains 9

Entry Points 25

Classes 18

High Debt Classes 3

Common Classes 3

Resource Exclusivity 71%

Class Exclusivity 77%

Extracted Percentage 100%

Ignored Classes 0

ACTIONS

View Tech-Debt Report

Show History

Show Resources Report

Configure Parameters

Reset Analysis

Undo Last Action

Reset Graph

Reset Ignored Items

Co-dependent Domains

PaymentService

PaymentService$EnhancerBySpringCGLI
B.authorize()

PaymentService$
$EnhancerBySpringCGLIB.reverseAuth()

1

2 3

ProductController

ModifyFullfillmentController PaymentService

Figure 4: Dependencies visualization

Definition Detection of new dependencies between domains, as visualized in Figure 4, enables architects to address
potential undesired domain dependencies that reduce resilience and stability.

Description Architects can simplify interactions between domains by highlighting new, changed, or unnecessary
dependencies, leading to improved domain exclusivity and a more robust and reliable system.

Impact and
remediation

Maintain architectural health and manage the growth of technical debt by identifying and addressing the
introduction of new domain dependencies.

9© vFunction 2024

Architectural events that impact
application scalability

Gartner defines scalability as “the measure of a system’s ability to increase or
decrease in performance and cost in response to changes in application and
system processing demands.”

Software architecture significantly impacts how an application can scale  
based on the modularity of the system and its ability to take advantage of
scaling technologies such as auto-scaling, load balancing, horizontal scaling,  
and containerization and orchestration services utilizing Kubernetes or
serverless platforms.

To improve scalability in applications, address these architectural events first.

Scalability

https://www.gartner.com/en/information-technology/glossary/scalability

10© vFunction 2024

Architectural events that impact application scalability

Event: New common classes added/removed

Definition This event monitors the introduction of new common classes or the removal of existing ones.

Description Common classes are those used across multiple domains or functions. The misuse or overuse of common
classes can lead to tight coupling and decreased modularity.

Impact and
remediation

Architects should consider adding an extensively used common class to its JAR or infra JAR. Tracking how
different domains use these classes is crucial to avoid unnecessary dependencies and tight couplings.

Event: Common-to-domain dependency

Definition This event focuses on enhancing the management of compile-time dependencies by identifying and
addressing dependencies involving common classes at the application entry points.

Description This event aims to ensure that compile-time dependencies are tracked and managed. Continual tracking
maintains the application architecture's modular structure and cohesiveness, which is crucial for its overall
health and efficiency.

Impact and
remediation

In scenarios where an entry point establishes a dependency on a common class at compile time,
highlighting these dependencies becomes critical.

Undetected and unresolved dependencies lead to architectural inefficiencies and, subsequently, an
increase in technical debt.

This event's automatic detection capability plays a role in the early intervention of technical debt and keeps
the application architecture efficient and aligned with best practices.

11© vFunction 2024

Architectural events that impact application scalability

Event: Changes in exclusivity

1
Manual TODO

3 Manual TODO

1
Manual TODO

TODO (3)

FILTER

Manual TODO

Snooze Dismiss Locate

DOMAIN CLASS EXCLUSIVITY

1

30-Aug-2023 19:50

Figure 5: Detect dynamic class exclusivity events

Definition This event monitors changes in the exclusivity of specific classes, both dynamic and static, as well as
resources like database tables, transactions, Spring beans, sockets, and files. In this context, exclusivity
refers to whether a class or resource is confined to a single domain or dispersed across multiple domains.

Description Changes in exclusivity reflect the shifting distribution of these elements across domains.

Monitoring exclusivity changes in dynamic classes as seen in Figure 5 above allows teams to identify
and respond to runtime modifications that could introduce instability or security risks to the system.
Understanding these changes enables the timely mitigation of potential issues and ensures the
application’s consistent and secure performance.

Monitoring exclusivity changes in static classes is invaluable for maintaining a coherent architecture. It
helps track unintentional dependencies and coupling introduced during the development phase,
promotes cleaner code, and facilitates easier maintenance and debugging processes.

Resources, such as database tables and files, play a pivotal role in the system's functionality. Monitoring
their exclusivity ensures data integrity and system performance. When a typically exclusive resource
starts appearing in multiple domains, it could indicate data redundancy, potential data conflicts, or
increased load on the resource. Understanding and addressing these exclusivity resource changes is
vital for preventing data-related issues and maintaining the system's overall health and efficiency.

 Dynamic class exclusivity changes 

 Static class exclusivity changes 

 Resource exclusivity changes 

Impact and
remediation

A class or resource appearing in multiple domains indicates reduced modularity and increased complexity.
Architects should carefully examine this expanded distribution to discern whether it is intentional and
advantageous or a harbinger of architectural pitfalls like heightened coupling or encapsulation loss.

Consider refactoring when a class or resource loses its exclusivity. Targeted refactoring restores the
exclusive nature and singular responsibility of the resource or class, minimizing the unnecessary creation of
dependencies and safeguarding the integrity and efficiency of the application's architecture.

12© vFunction 2024

Architectural events that impact
engineering velocity

DORA metrics by the are standard
measures application teams use for continuous improvement and quarterly and
annual goals.

Complex software architecture increases test times, complicates adding new
features, and increases deployment friction due to the plethora of cross-
domain dependencies. Architectural events help engineering leaders get to the
root of their velocity challenges.

DevOps Research and Assessment Group

Velocity

https://dora.dev/

13© vFunction 2024

Architectural events that impact engineering velocity

Event: New dead code added/removed

TODO | 7 DONE | 5OMS WebApp. Baseline measurement Last measurementClean Baseline Scheduled -16 Apr 2024

Priority Date Event Details Domains

M 2 11-Feb-2024 17:01 Dead Code GemfireCacheLoader Application

D 2 11-Feb-2024 17:01 Dead Code StoreSearchResponseDto Application

D 2 11-Feb-2024 17:01 Dead Code EmailResponseDto Application

D 2 11-Feb-2024 17:01 Dead Code MastercardPaymentHttpClient Application

D 2 11-Feb-2024 17:01 Dead Code InventoryRepository Application

D 2 11-Feb-2024 17:01 Dead Code StoreSearchRequestDto Application

D 2 11-Feb-2024 17:01 Dead Code InventoryRequestDto Application

D 2 9-Apr-2024 10:21 Dead Code DeliveryController Application

D 2 21-Mar-2024 07:56 Dead Code DinersPaymentService Application

D 2 21-Mar-2024 07:56 Dead Code EmailService Application

D 2 21-Mar-2024 07:56 Dead Code QBean Application

D 2 21-Mar-2024 07:56 Dead Code GermanAddressValidatorHttpClient Application

Figure 6: Pinpoint dead code

Definition Signals the detection of dead flows, obsolete, or dead code within an application.

Description Dead code, as seen in Figure 6, comprises inactive or non-executable sections that serve no functional
purpose within the application's source code. This includes unused functions/methods defined but not
invoked and reachable code that is logically inaccessible during execution. Engineers can prune such code
without jeopardizing the program's operational integrity.

Traditional static analysis tools often miss dead code that dynamic analysis detects using techniques such as

Dead code that dynamically emerges from changes in operational
logic and user requirements.

 This event accurately flags unreachable code, which is often
mistaken as necessary due to complex dependencies or obfuscated execution paths

 this event finds obsolete code snippets
within active functions.

 This event discovers dead code that is not detectable during
compile time or through static analysis, ensuring comprehensive detection.

Any dynamic analysis tool used for dead code detection will require safety mechanisms to ensure that
code not executed is dead code, not just code of an infrequent flow. Therefore, a combination of static and
dynamic analysis is advised.

 Adaptive dead code recognition:

 Sensitive unreachable code detection:

 Redundant code blocks detection within active functions:

 In-depth analysis of runtime data:

Impact and
remediation

Engineering teams should implement a strategy to periodically review and clean up the codebase to keep it
clean, maintainable, and efficient.

While traditional methodologies include static code analysis tools, code coverage tools, and manual code
review, it is important to include dynamic analysis and static analysis of the binaries, which offer real-time and
deeply analytical insights, providing thorough and accurate dead code detection and removal.

14© vFunction 2024

Architectural events that impact engineering velocity

Event: New high debt classes added, removed

Avg Debt
37%

High Debt Classes
1,279

Weighted Debt Score
74%

35

30

25

20

15

10

5

0
Low Medium Average High Very High

Architectural Posture

4,169
Classes

Average Size of Apps Aging Framework

64%

Tech Debt-Posture

Figure 7: Detect high debt classes

Definition This event tracks the introduction and removal of high-debt classes. 'Debt' refers to architectural technical
debt (ATD), which signifies the level of dependence between domains and architectural complexity created
by the specific class.

Description "High debt class" events do not solely rely on the usual suspects of coding flaws or design shortcuts. These
events focus on dynamic analysis of parameters to evaluate and identify a class's architectural debt:

The class should have many dependencies, indicating dependencies with other classes
or components within the application.

 Multiple dependents rely on this high debt class, making it a crucial node whose failure or
malfunction might have cascading effects.

 This indicates the absolute size of the class, not relative to the application. A high debt class of
substantial size indicates its encompassing complexity and potential difficulty in maintenance and
modification.

This approach delves deeper into the relationships within the application, offering a nuanced understanding
of the debt a class introduces.

 Dependencies:

 Dependents:

 Size:

Impact and
remediation

To efficiently manage and mitigate technical debt, architects must prioritize refactoring classes identified
as high debt under this refined criteria. Strategies include:

 Reducing the class’s complexity and dependencies.

 Regular architectural reviews to prevent the introduction of new high debt classes.

Prioritize these classes in the development backlog for refactoring. By focusing on architecturally significant
and entangled classes, this approach provides a targeted strategy to control and reduce the systemic risk
and maintenance overhead introduced by high debt classes, thereby promoting a healthier, more
sustainable codebase in the long term.

15© vFunction 2024

Architectural events that impact engineering velocity

Event: Library circular dependencies

Definition This event detects library circular dependencies in internal JARs.

Description Circular dependencies can manifest as bi-directional arrows in the dependency graphs, indicating that
two or more JARs are directly interdependent or dependent through a series of intermediaries.

 Circular dependencies can lead to initialization problems, ambiguous designs, and complicate the
module upgrade or replacement processes

 When a circular dependency is detected, architects should delve deep to understand the reasons
behind it. Often, it's an unintentional result of incremental changes or rapid development without
adequate architectural oversight.

Impact and
remediation

These dependencies can affect the startup order or cause runtime failures, particularly in dynamic module
systems, impacting the system's resiliency.

Assess whether this dependency introduces redundant functionality or manifests domain overlap. These
insights can guide refactoring efforts to break the circular chain. Beyond just identification, it's beneficial to
have a visual representation of these dependencies. An isolated graph, highlighted with an orange dashed
line and focused solely on the circular chain allows teams to grasp the extent of the issue and strategize a
resolution without being overwhelmed by the entirety of the dependency graph.

Addressing these dependencies head-on ensures that the application's architecture remains modular,
maintainable, and free from intricate entanglements that can stifle innovation.

16© vFunction 2024

Architectural events to detect
cloud readiness issues and
streamline cloud migration

Cloud readiness architectural events highlight an application’s preparedness  
for cloud environments. Given the increasing reliance on cloud platforms for
scalability, flexibility, efficiency, and cost reduction, it is a critical aspect of
modern software architecture. Applications should follow the fundamental
principles of cloud-native design, such as microservices architecture,
containerization, and DevOps practices.

These events start with the existing technologies and frameworks in the
application and then provide actionable insights into the cloud readiness of  
a specific domain. Alerting engineers to the readiness of their application
domains for cloud environments, as shown in Figure 8 on the next page,
identifies areas that require changes or improvements to leverage cloud
capabilities effectively.

Cloud  
Readiness

17© vFunction 2024

Logger

Priority: cloud-mandatory

Effort: 1

Target Technology: cloud-readiness

Message: An application running inside a container could lose access to a file in local storage.

Baseline measurement

Last measurement

Scheduled - 18 Jan 2024 07:55

Scheduled - 22 Jan 2024 10:28

Recommendations

The following recommendations depend on the function of the file in local storage
 Logging: Log to standard output and use a centralized log collector to analyze the logs
 Caching: Use a cache backing service
 Configuration: Store configuration settings in environment variables so that they can be updates without code changes
 Data storage: Use a database backing service for relational data or use a persistent data storage system
 Temporary data storage: Use the file system of a running container as a brief, single-transaction cache.

Export CSVTODOS-1185 OF 2788 (5 Filters Applied) GROUP BY: Application

OMS WebApp. Baseline measurement Last measurementScheduled - 18 Jan 2024 Scheduled -16 Apr 2024

Priority Date Event Details

C 2 17-Feb-2024 12:58 File system - Java IO Logger

Figure 8: Cloud readiness event example

Examples of cloud readiness events based on rulesets and applied dynamically based
on the detected application configuration include

 Migration to cloud friendly framework

 Direct dependency on an O/S platfor

 Hard-coded propertie

 Non-cloud native standard

 Per session contex

 Embedded versus distributed cache

 Passwords in properties

Windup Cloud Readiness

https://windup.github.io/

18© vFunction 2024

Cloud compatibility events create tasks based on the source technology used by the application and the target
technology the user intends to migrate to. JAVA target technologies for compatibility evaluation include:

Azure AKS Azure App Service Azure Container Apps Azure Spring Apps

Camel Drools EAP Fuse

Hibernate Hibernate Search Jakarta jBPM

JEE JWS Linux Open Liberty

OpenJDK 11 OpenJDK 17 Quarkus RESTEasy

Cloud readiness is also available for .NET applications. Compatibility readiness is not a one-time event but a
continuous process. Regular evaluations and updates ensure that applications align with the latest cloud
technologies and methodologies.

19© vFunction 2024

Events for distributed applications

In distributed applications, monitoring architectural events is crucial due to  
the inherent complexity and interconnectedness of multiple services and
components. Unlike monolithic applications, where the codebase is centralized,
distributed systems involve intricate dependencies and communication
patterns among various services.

Architectural events provide visibility into these interactions, enabling proactive
technical debt management, maintainability, and overall system health. This
visibility empowers informed decision-making regarding refactoring,
optimization, or architectural adjustments, ensuring that the distributed
application adheres to established principles, maintains modularity, and avoids
uncontrolled complexity.

Distributed 
Applications

20© vFunction 2024

Events for distributed applications

Events that impact resiliency

Event: New service added

This event indicates that a new service has been detected within the application, potentially signaling
unplanned expansion or architectural drift. Uncontrolled growth of services can lead to increased
complexity, reduced maintainability, and potential performance issues.

Event: Multi-hop trace

This event alerts users to multi-hop traces that exceed a certain threshold, indicating potentially
complex service interactions that could impact performance. Excessive hops or overly complex service
interactions can lead to latency, inefficiency, and increased potential for failures or bottlenecks.

Event: Introduce service dependency

While introducing dependencies can enable new functionality or improve integration, it should be done
judiciously to avoid creating tight coupling or excessive inter-service communication. Users should
carefully assess the proposed dependencies and ensure they align with the architectural principles and
design goals.

Events that impact application scalability

Event: Resource exclusivity between services

This event informs users about changes in resource exclusivity among services, which could signal
potential conflicts or inefficiencies. Resource sharing can lead to contention, performance issues, or
data integrity problems if not managed properly.

21© vFunction 2024

Events for distributed applications

Events that impact engineering velocity

Event: Service dependency added

This event notifies the users of newly added dependencies between services, which affect complexity
and can potentially affect the application's performance. Service dependencies can introduce coupling,
making it more difficult to maintain, scale, or refactor individual components.

Event: Circular traces

This event warns users about the detection of circular traces within the application, which can lead to
performance issues or infinite loops. Circular dependencies can create complex and hard-to-maintain
code, as well as introduce potential stability and scalability issues.

Event: Merge services

This event highlights opportunities to consolidate multiple services into a single service, potentially
simplifying the application's structure. Excessive service granularity can lead to increased complexity,
overhead, and potentially redundant functionality.

In MONOLITHIC APPLICATIONS, where the codebase is centralized, architectural events play a vital role in
maintaining a well-structured and maintainable codebase. Unlike distributed systems, where the focus is on
service interactions, architectural events in monolithic applications provide insights into the evolving
complexity within the codebase itself.

By monitoring events, architects gain a comprehensive understanding of the application's evolving
complexity. Events allow teams to address potential issues before they escalate, ensuring the codebase
remains modular, cohesive, and free from unnecessary complexity.

vFunction architectural
observability

Architectural observability is the key to detecting architectural events on a continuous basis. With the ability to
analyze an application statically and dynamically, understand its architecture, observe drift, and find and fix
architectural technical debt, architects and engineering teams can directly address application resiliency and
scalability while improving engineering velocity and streamlining cloud readiness.

vFunction’s AI-driven architectural observability platform manages architectural drift and detects architectural
technical debt problems as they are introduced, so application teams can take proactive steps to specifically
address the core problems affecting their highest priority KPIs.

The vFunction architectural observability platform is scalable, secure, and designed to routinely analyze and
observe architecture in your regular development cycles to

 Discover the real architecture of your application

 Prevent architectural drift

 Manage and remediate technical deb

 Increase application resiliency

 Transform monoliths to microservices

Learn more about how can help you identify the architectural events impacting your business.vFunction

Backed by

Partnered with

Cloud Infrastructure

Awards & Recognition

About vFunction

vFunction, the pioneer of AI-driven architectural observability, delivers a platform that increases application resiliency, scalability and engineering
velocity by continuously identifying and recommending ways to reduce technical debt and complexity in applications. Global system integrators and
top cloud providers partner with vFunction to assist leading companies like Intesa Sanpaolo and Trend Micro in discovering their architecture and
transforming applications to innovate faster and change their business trajectory. vFunction is headquartered in Menlo Park, CA, with offices in Israel,
London, and Austin, TX.

To learn more, visit .www.vfunction.com

http://www.vfunction.com
http://www.vfunction.com/

