How Java Microservices Work

Microservices are a modern approach to software architecture. With microservices, application code is delivered in small, manageable pieces
that are independent of others. In general, a microservices architecture represents a pattern of design in which each microservice is a small
piece of the pie - in this case, the pie is the overall system. All microservices have their unique function, which is essential to the overall result.
The idea behind a successful microservice is empowering the system to identify and recognize a unique subtask, or specific domain. Since each
microservice will need to communicate with the other microservices often in a service mesh, the architecture requires a lightweight messaging
system for such data transfer. There are a series of Java-based frameworks used to construct Java microservices. A few examples are:

Spring Boot:

Play Framework:

Spring Boot is a well-known framework that Play is based on a lightweight, stateless, web-friendly
helps build Java applications like microservices. architecture. Built on Akka, Play provides predictable

It is effective as it makes the setup easy-
everything is auto configured; no manual

configurations are needed.

Quarkus:

Quarkus is a Kubernetes-native Java
framework tailored for GraalVM and
HotSpot, crafted from best-of-breed
Java libraries and standards.

Micronaut:

Micronaut is a software
framework for the Java
virtual machine platform.
It is designed to avoid
reflection, thus reducing
memory consumption and
improving start times.

Akka:

Akka is an actor-based toolkit

for building highly concurrent,
distributed, and resilient message-
driven applications for Java and
Scala.

Jhipster:

JHipster is a development platform that
utilizes Sprint Boot to quickly generate,
develop, and deploy modern web applications

and microservice architectures.

vFunction

Request a Demo »

and minimal resource consumption for highly-scalable
applications.

MicroProfile:

An open forum to optimize Enterprise
Java for a microservices architecture
by innovating across multiple
implementations and collaborating

on common areas of interest with a
goal of standardization.

Eclipse Vert.x:

Vert.x is a tool-kit for building
Reactive applications on the
JVM. Reactive applications
are both scalable as workloads
grow, and resilient when
failures arise.

Eclipse Jersey:

This unique Java framework helps
simplify the formation of REST web
services. With this, communication
between various microservice layers
will be effective.

Swagger:

Swagger helps build REST APIs. It is a
Java framework that facilitates interaction
between various microservices.

About vFunction

vFunction is the first and only Al-driven platform for architects and developers that
intelligently and automatically transforms complex monolithic Java applications into
microservices, restoring engineering velocity and optimizing the benefits of the cloud.
Designed to eliminate the time, risk and cost constraints of manually modernizing business
applications, vFunction delivers a scalable, repeatable factory model purpose-built for cloud
native modernization. With vFunction, leading companies around the world are accelerating
the journey to cloud-native architecture and gaining a competitive edge. vFunction is
headquartered in Palo Alto, CA, with offices in Israel. To learn more, visit vFunction.com.




	Page 1

