
VS

Wondering about the differences between monolithic applica�ons vs microservices? As more
companies move to a cloud-first architecture, it’s important to understand these terms.

The tradi�onal monolithic enterprise applica�on is usually presented as a three-�er architecture
– a client-side applica�on, a database, and a server-side applica�on. The server-side applica�on
itself consists of a web interface, a business logic layer, and a data layer.

It may be built either as one large “monolithic” block of code, or as a collec�on of small,
independent, and reusable pieces called microservices. Most legacy applica�ons have been built
as monoliths. Conver�ng them to microservices has both benefits and challenges.

User
Interface

Business
Layer

Data
Interface

A monolithic architecture is one where all the 
components of an applica�on are located within a 
single code base. The web interface, business logic 
layer, and data layer are all combined in a single 
instance of the applica�on. The applica�on is 
deployed as a single unit, such as a JAR, WAR, exe, 
or something similar.

Monolithic code is organized as a single unit with 
various func�onali�es and dependencies interwoven 
throughout the code. The coding shortcuts, ad hoc 
patches, and documenta�on inadequacies that are 
typical sources of technical debt in legacy 
applica�ons are embedded in the code in ways that 
are extremely difficult for humans to unravel. Worse, 
because of hidden dependencies in the code, any 
changes aimed at upgrading func�ons or adding 
features may ripple throughout the codebase in 
unexpected ways, poten�ally causing the en�re 
applica�on to fail.

A microservices architecture consists of services 
that are small, independent, and loosely coupled. 
Microservices are small chunks of code that 
perform a single task. Every service can be an 
independent applica�on with its own programming 
language, development and deployment framework, 
and database. Each service can be modified 
independently and deployed by itself. This allows 
developers to change a specific func�on in an 
applica�on by upda�ng the associated microservice 
without the risk of uninten�onally impac�ng the
codebase as a whole. A Gartner study shows that 
microservices can deliver be�er scalability and 
flexibility.

Monolithic Applica�ons Microservices

Microservices

Monolithic
Applica�ons 

User
Interface

Microservice

Microservice Microservice

Microservice

How Java Microservices Work 
Microservices are a modern approach to so�ware architecture. With microservices, applica�on code is delivered in small, manageable pieces 

that are independent of others. In general, a microservices architecture represents a pa�ern of design in which each microservice is a small 
piece of the pie – in this case, the pie is the overall system. All microservices have their unique func�on, which is essen�al to the overall result. 
The idea behind a successful microservice is empowering the system to iden�fy and recognize a unique subtask, or specific domain. Since each 
microservice will need to communicate with the other microservices o�en in a service mesh, the architecture requires a lightweight messaging 

system for such data transfer. There are a series of Java-based frameworks used to construct Java microservices. A few examples are: 

Spring Boot: 
Spring Boot is a well-known framework that
helps build Java applica�ons like microservices.
It is effec�ve as it makes the setup easy–
everything is auto configured; no manual
configura�ons are needed. 

Quarkus: 
Quarkus is a Kubernetes-na�ve Java
framework tailored for GraalVM and
HotSpot, cra�ed from best-of-breed
Java libraries and standards. 

Micronaut: 
Micronaut is a so�ware
framework for the Java
virtual machine pla�orm.
It is designed to avoid
reflec�on, thus reducing
memory consump�on and
improving start �mes. 

Akka: 
Akka is an actor-based toolkit
for building highly concurrent,
distributed, and resilient message-
driven applica�ons for Java and
Scala. 

Jhipster: 
JHipster is a development pla�orm that
u�lizes Sprint Boot to quickly generate,
develop, and deploy modern web applica�ons
and microservice architectures. 

Play Framework: 
Play is based on a lightweight, stateless, web-friendly
architecture. Built on Akka, Play provides predictable
and minimal resource consump�on for highly-scalable
applica�ons. 

MicroProfile: 
An open forum to op�mize Enterprise
Java for a microservices architecture
by innova�ng across mul�ple
implementa�ons and collabora�ng
on common areas of interest with a
goal of standardiza�on. 

Eclipse Vert.x: 
Vert.x is a tool-kit for building
Reac�ve applica�ons on the
JVM. Reac�ve applica�ons
are both scalable as workloads
grow, and resilient when
failures arise. 

Eclipse Jersey: 
This unique Java framework helps
simplify the forma�on of REST web
services. With this, communica�on
between various microservice layers
will be effec�ve. 

Swagger: 
Swagger helps build REST APIs. It is a
Java framework that facilitates interac�on
between various microservices. 


	Page 1

