
API Services

Core Services

GUIDE

Ending Microservices 
Chaos
How Architecture Governance Keeps  
Your Microservices on Track

By Alvin Lee, full-stack developer and founder, Out of the Box Development



1© vFunction 2024

Introduction

A microservices architecture is the gold standard for building scalable web applications. 
Gartner estimates that  , 
with another 23% planning to use them soon. 


If you’re an IT leader, architect, or developer, you might have experienced the faster deployments, better fault 
isolation, and easier scaling that come with microservices. 


However, the old maxim, “There’s no such thing as a free lunch,” rings true here. Because microservices can also 
lead to significant operational overhead and complexity. Microservices sprawl, unclear component dependencies, 
service duplication, and anti-patterns like circular dependencies are all part of the chaos that comes hand-in-
hand with microservices.


Perhaps you’ve seen some of the common symptoms of this microservices chaos

 Engineering velocity drastically slows down

 Onboarding new developers grows more difficult

 Mean time to recovery (MTTR) for outages or performance issues increases

 Overall system resiliency diminishes, putting business outcomes at risk.


While it’s still best practice to modernize monolithic applications by breaking them into microservices, it’s also 
best practice to proactively guard against the issues that microservices introduce. 

74% of organizations use microservices for their web applications

of organizations use 
microservices for their 
web applications

74%

*Source: GARTNER, Microservices Architecture: Have 
Engineering Organizations Found Success? Jun 18 - 
Jul 13, 2023. GARTNER is a registered trademark and 
service mark of Gartner, Inc. and/or its affiliates in the 
U.S. and internationally and is used herein with 
permission. All rights reserved.

https://www.gartner.com/peer-community/oneminuteinsights/microservices-architecture-have-engineering-organizations-found-success-u6b


2© vFunction 2024

Architecture Governance to Control  
the Chaos

The best way to proactively guard against these problems is by using architecture governance — a collection of 
rules, processes, and practices that manage and control your software architecture.


With proper software architecture governance, you can reduce microservices complexity, ramp up developers 
faster, reduce MTTR, and improve the resiliency of your system, all while building a culture of intentionality. 


(Note that we’re talking about software architecture governance in this article, not enterprise architecture 
governance which has been around for some time and is concerned with the policies, processes, and procedures of 
enterprise architecture strategies.)  


But exactly how do you build architecture governance? 


Governance, whether we’re talking about access, data, or architecture, is often just establishing a set of rules. But for 
architecture governance, you need more than just rules. You must start with architectural observability.

Monolithic architecture complexity
In monolithic architectures, teams release updates less 
frequently, bundling changes into larger updates that slow 
the rate of new dependencies. However, when complexity 
does surface, it's deeply embedded and harder to identify 
or resolve due to the tightly coupled nature of monoliths.

Need to modernize

Dependency graph of a 12-year old monolith

1.5m LOC

Dependency graph of a distributed 
architecture within months

100+
microservices

300+
microservices

500+
microservices

Distributed architecture complexity
In distributed architectures, frequent releases by 
multiple teams often create unintentional 
dependencies, leading to cascading failures, 
increased latency from inefficient communication, 
and reduced scalability. Without clear visibility into 
service interactions, anti-patterns emerge, 
jeopardizing reliability and resilience.

Need to control/govern



3© vFunction 2024

Architectural Observability:  
The Foundation of Good Governance

To implement effective governance, you first need comprehensive visibility into your software architecture. 


Architectural observability gives you a continuous, real-time view of your architecture. It provides your team with 
the necessary insights to manage the architecture and interconnectedness of distributed applications. 


Architectural observability provides documentation from a working system, it shows you systems flows, 
dependencies, what’s changing, and how your systems interact. It gives your team a thorough understanding of 
how the architecture works, how it drifts from release to release, and how its changes impact dependent services 
and resources. 


Without this visibility, you’re in trouble. If you’ve built a microservices project, you’ve probably encountered the 
results of a lack of visibility:

Microservices 
that are 

difficult to 
manage

Unclear 
component 

dependencies

Service 
duplication

Anti-patterns 
such as circular 
dependencies 
that increase 

the risk of 
outages

Performance 
issues

Your overall application resiliency, scalability, and engineering velocity are at high risk. And it only gets worse —  
the longer you let this lack of visibility continue, the more complex and unmanageable your architecture becomes.



API Services

Core Services

A
rc

hi
te

ct
ur

e 
Te

ch
 D

eb
t

Good Observability Equals Good 
Governance

But with good architectural observability, you can visualize your architecture layer in real-time, gaining an 
understanding of how your system works and monitoring changes as your architecture evolves. 


With observability, your team can proactively address issues, such as service sprawl and dependency 
mismanagement — before they lead to technical debt or system failures.


And once you have that observability in place — once you know what’s happening and what’s changing— 
you can now create and enforce your rules of governance. 


You can implement a governance program that sits over your architecture, monitors, and controls changes, and 
allows you to build and manage microservices effectively by proactively applying standards and rules to your 
architecture and codebase as it evolves.


Sounds great! But how do you actually build this? Let’s look at an example of how to build this in the real world.

4© vFunction 2024



Consumer

Consumer

organizations

organizations

measurements

measurements

/api/v1/organizations/applications/global/state/data (POST)

/api/v1/measurements/get/application/globals (POST)

/api/v1/organizations/applications/:id (GET)

[404]

OK

OK

OK

/api/v1/organizations/measurements/get (POST)

OK

Flow
oms http PATCH/service VIEW

loop

Example of exportable 
sequence flow diagram

Implementing Architectural 
Observability and Governance

First, you need to implement your architectural observability. 


The domain of architectural observability is new and rapidly evolving. For our example, we’ll use one of the platforms 
at the forefront —  , an AI-driven platform that provides visualizations of software architecture. 


Platforms such as these leverage AI and   tracing to enable teams to track every aspect of their 
architecture and monitor changes between releases. It can quickly identify complex flows, architectural technical 
debt, and architectural drift. 


For example, you can better understand your distributed applications

 Visualize the architecture and automatically create exportable sequence diagrams of all system and data flows

 Identify drift, such as new services or dependencies

 Identify resource exclusivity changes (such as multiple new services accessing the same database table) 
versus previous releases

 Identify circular dependencies between services that could impact resiliency

 Identify duplicate functionality/services that may be merged to remove complexity

 Maintain an up-to-date, real-time view of the global microservices ecosystem.

vFunction

OpenTelemetry

vFunction uses the same data that APM tools use (so it’s straightforward to install) but uses a different layer of 
intelligence to address the architectural root cause of issues. This is especially important for managing the sprawl 
and complexity that result from the rapid and frequent deployment of microservices.

5© vFunction 2024

https://vfunction.com/platform/
https://opentelemetry.io/


Implementing Rules to Maintain 
Standards

After implementing your observability, you’re ready to create and enforce your rules of governance. With an 
architectural governance platform, you can create architecture rules and tags and then monitor your architecture 
in real-time against those rules, enforcing your critical governance policies. Any time a deployment or merge 
request breaks these rules, you can block that action.

What type of rules might your governance enforce? 

watch and send alerts

You could 
enforce rules such as

 Dependency requirements: For example, certain services 
should or should not communicate with other services

 Restricted resource

 Multiple services should not depend on the same database 
table

 Changes should not increase service interdependencies

 Restrictions on new multi-hop flows that could impact 
performance and resiliency.


Then, your platform can   for all of the above.

 Configure Plan

 Schedule Learning

 Configure Schedule

 Configure Alerts Architectural Events to Follow

Set up which architectural events to get 

notifications for

New Domain / Service 

Domain / Service Dependency

Resource Exclusivity

Circular Flow

Multi-Hop Flow

Merge Services

New Service Dependency

Flow Added

Flow Removed

Architecture Rule Violation

Recommended Refactoring

Non-encrypted HTTP calls

New Resource

Settings

Delivery Type

Users

Email

Administrators

Email

Post-Learning Update

Get notified when a learning 

has ended

CONFIRM CHANGES

By implementing a focused set of rules and tags, you can create adaptive governance that guides developers in 
maintaining an optimal, clean, and efficient architecture. You can build architecture governance into your code 
and your culture.

6© vFunction 2024

1 Allow consumer Calling API-service No Priority no TODO’s

2 Alert consumer Calling any-service Priority 1 no TODO’s

3 Alert core-service Calling any-service Priority 2 5 TODO’s

4 Alert consumer Calling any-service No Priority no TODO’s

Add Rule

Action Caller Callee Priority Actions Execute Dry Run

Application Rules (3 active)

Allow

Require

Alert

https://medium.com/@kirill.velikanov/what-a-software-architect-should-know-about-the-architecture-governance-37f3a26f9de1#:~:text=Architecture%20Governance,-I%20find%20it&text=And%20IT%20governance%20is%20more,on%20different%20domains%20and%20projects
https://vfunction.com/solutions/microservices/


Backlog TODO

Drift TODO

Drift DONE

Drift DONE

Drift DONE

TODO (26)

Backlog TODOResource Exclusivity

Baseline measurement:
Effort estimation: Medium

Last measurement:
Baseline
Cori Avidan - 28 May 2024 08:48

Assess the impact of the resource exclusivity change involving 
payment_info (rw) and services oms, oms-order. If intentional, 
ensure proper access controls, monitoring, and safeguards are in place. If 
unintended, consider refactoring or redesigning the components to 
restore resource exclusivity.

The Role of Microservices Security and 
Code Quality

In addition to controlling the chaos of microservices with governance and observability, maintaining a high 
standard of security and code quality is essential. When working with distributed systems, the complexity of 
microservices — if left unchecked — can lead to vulnerabilities and technical debt.


provides developers with intelligent insights into code logic, identifying bugs and vulnerabilities that may 
otherwise go unnoticed. It allows teams to address security concerns during development, reducing risks  
in production.


Tools from SonarSource — such as   or   — focus on continuous code quality and security. 
They help developers identify potential issues such as code smells, duplication, or even security risks like SQL 
injection. By integrating seamlessly with CI/CD pipelines, they ensure that every deployment follows strict 
security and code quality standards.


The connection between code quality, application security, and architectural observability is clear. Poor code 
quality and unresolved vulnerabilities can lead to a fragile architecture that is prone to outages and security 
incidents. By proactively managing your code quality and security using these tools, you reduce the risk of 
microservices complexity spiraling out of control. This, coupled with strong architectural observability, ensures 
you maintain a resilient and secure microservices ecosystem.

Qodo 

SonarLint SonarQube

7© vFunction 2024

https://www.qodo.ai/
https://www.sonarsource.com/products/sonarlint/
https://www.sonarsource.com/products/sonarqube/


Conclusion

Microservices chaos can threaten to derail development velocity, system resiliency, and 
operational efficiency. Architecture governance offers a way out of this chaos — a way to 
regain control over your architecture and steer it toward greater scalability and stability. 


Whether your organization is just starting to scale with microservices or is already in the 
depths of microservices sprawl, it’s the right time to introduce architecture governance to 
ensure that your architecture is efficient and resilient—and ready to support your next 
phase of growth.

8© vFunction 2024

About the Author

Alvin Lee is the founder at Out of the Box Development, LLC. He 
is a full-stack developer and technology consultant specializing 
in web architectures, microservices, and API integrations.


Article first appeared in DZone

About vFunction

vFunction, the pioneer of AI-driven architectural observability, delivers a platform that enables you to understand 
your application architecture, reduce technical debt and manage complexity. Whether you want to modernize 
monoliths, or add governance to your microservices architecture, vFunction provides the visibility, analysis, 
control and automation you need. Global system integrators and top cloud providers partner with vFunction to 
assist leading companies like Intesa Sanpaolo and Trend Micro in discovering their architecture and transforming 
applications to innovate faster and change their business trajectory. vFunction is headquartered in Menlo Park, 
CA, with offices in Israel, London, and Austin, TX.


To learn more, visit  .www.vfunction.com

https://dzone.com/articles/ending-microservices-chaos-architecture-governance
http://www.vfunction.com/



